منابع مشابه
TNA synthesis by DNA polymerases.
Threose nucleic acid (TNA), which has a repeat unit one atom shorter than that of DNA, is capable of Watson-Crick base pairing with DNA, RNA, and TNA. Because of its chemical simplicity, TNA is considered to be a possible progenitor of RNA. As an initial step toward developing the molecular tools necessary to investigate the functional capabilities of TNA by in vitro selection, we have screened...
متن کاملRap1 prevents telomere fusions by nonhomologous end joining.
Telomeres protect chromosomes from end-to-end fusions. In yeast Saccharomyces cerevisiae, the protein Rap1 directly binds telomeric DNA. Here, we use a new conditional allele of RAP1 and show that Rap1 loss results in frequent fusions between telomeres. Analysis of the fusion point with restriction enzymes indicates that fusions occur between telomeres of near wild-type length. Telomere fusions...
متن کاملDNA polymerase-mediated DNA synthesis on a TNA template.
TNA, or threose nucleic acid, is capable of Watson-Crick base pairing with DNA, RNA, and TNA; coupled with its chemical simplicity, this suggests that TNA is a possible progenitor of RNA. As an initial step toward developing the molecular tools necessary to investigate the functional capabilities of TNA by in vitro selection, we have screened a variety of DNA polymerases for activity on a TNA t...
متن کاملTRF2 Protects Human Telomeres from End-to-End Fusions
The mechanism by which telomeres prevent end-to-end fusion has remained elusive. Here, we show that the human telomeric protein TRF2 plays a key role in the protective activity of telomeres. A dominant negative allele of TRF2 induced end-to-end chromosome fusions detectable in metaphase and anaphase cells. Telomeric DNA persisted at the fusions, demonstrating that TTAGGG repeats per se are not ...
متن کاملTelomeres: The Molecular Events Driving End-To-End Fusions
Recent data indicate that loss of the protective telomeric capping function leads to active degradation of the telomeric G-strand overhang and DNA ligase IV-mediated non-homologous end joining. These molecular events may contribute to genomic instability early in tumorigenesis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbiology
سال: 1985
ISSN: 1350-0872,1465-2080
DOI: 10.1099/00221287-131-5-1131